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Abstract: 
The Auto-regressive model in the time series is regarded one of the statistical articles which is more 

used because it gives us a simple method to limit the relation between variables time series. More over it is one 

of Box –Jenkins models to limit the time series in the forecasting   the value of phenomenon in the future so that 

study aims for the practical analysis studying  for the auto-regressive models in the time series, through one of 

Box –Jenkins models for  forecasting  the daily degrees of temperature in Sulaimani city for the year (2012-

Sept.2013) and then for building a sample in the way of special data in the degrees of temperature and its using 

in the calculating the future forecasting . the style which is used is the descriptive and analyzing by the help of 

data that is dealt with statistically and which is collected from the official  resources To reach his mentioned aim 

, the discussion of the following   items has been done by the theoretical part which includes the idea of time 

series and its quality and the autocorrelation and Box –Jenkins and then the practical part which includes the 

statistical analysis for the data and the discussion of the theoretical part, so they reached to a lot of conclusions 

as it had come in the practical  study  for building autoregressive models of time series as the mode was very 

suitable is the auto-regressive model and model  moving  average by the degree (1,1,1).      

Keywords: Box –Jenkins models, Time series, Auto-regressive model, Moving Average models, ARMA 

models, Sulaimani city. 

 

I. Introduction 

That there is a lot of studies and research economic and administrative, which focused on expectations 

of future because of its significant impact in this field well as study the time series for many phenomena and 

know the nature of the changes that will come out and what will happen with the change in the future and for a 

number of years and light of what happened to her in the past as researchers presented several studies to build 

models for time series and all amosmeh, and the mean time series study analyzed to its factors influencing, 

public Kalatjah, and seasonal changes and episodic and others. And is the regression model of self-time series 

and one of the statistical tools most widely used because it gives us an easy way to determine the relationship 

between the variables of the time series. Can express this relationship in the form of an equation as that one 

models Box _ Jenkins for time series analysis and forecasting values that appear in the future and his practical 

applications in the fields of economic and administrative and weather forecasters, for weather forecasting and 

measuring amounts of rain and temperatures that had significant effects in the areas of agricultural, industrial 

and marine navigation and others. Also for these models is particularly important in planning and forecasting 

future. 

 

II. Objective of this research 

The research aims to provide an analytical study applied to the regression model of autocorrelations-

time series by the model Box – Jenkins for forecasting  the daily temperature in the city of Sulaimani in  (2012) 

and then for building a model of data on temperature and to be used in the calculation of future forecasts.                                          

 

III. Research Methodology 

This is applied research, which is trying to build an appropriate (suitable) model for the purpose of 

forecasting temperatures in the city of Sulaimani in 2012 and to be used for forecasting. 

 

IV. The Theatrical part 
The Concept of Types of Time Series 
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A time series is a collection of observations of well-defined data items obtained through repeated 

measurements over time. There are two types of time series called stationary and non-stationary time series. 

Time series is a set of observations {xt }, each one being recorded at a specific time t. 

A time series model for the observed data {xt} is a specification of the joint distributions (or possibly 

only the means and covariance) of a sequence of random variables {Xt} of which {xt} is postulated to be a 

realization. 

In reality, we can only observe the time series at a finite number of times, and in that case the 

underlying sequence of random variables (X1,X2, . . . ,Xn) is just an n-dimensional random variable (or random 

vector). Often, however, it is convenient to allow the number of observations to be infinite. In that case {Xt, t = 

1, 2, . . .} is called a stochastic process. In order to specify its statistical properties we then need to `consider all 

n-dimensional distributions: 

  P[X1 ≤ x1, . . . ,Xn ≤ xn]      for all    n = 1, 2, . . . , 

A process t{X ,  t Z} is said to be an independent and identically distribution (IID) noise with mean (0) and 

variance (
2 ), written   {Xt} » IID(0, 

2 ), 

if the  random variables Xt are independent and identically distributed with 

                        E(Xt) = 0  and   Var(Xt) = 
2 .                

Then the mean is 
( )tw  

 ,and the variance: 
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We can distinguish between two types of time series through the values of correlation coefficients 

between the observations.   

 

V. Models for time Series 
Let us begin this section with the following wonderful quotation: 

―Experience with real-world data, however, soon convinces one that both stationary and Gaussianity are fairy 

tales invented for the amusement of undergraduates.‖ (Thomson 1994).  

Bearing this in mind, stationary models form the basis for a huge proportion of time series analysis 

methods. As it is true for a great deal of mathematics, we can begin with very simple building blocks and then 

building structures of increasing complexity. In time series analysis, the basic building block is the purely 

random process. 

Loosely speaking a stationary process is one whose statistical properties do not change   over time. 

More formally, a strictly stationary stochastic process is one where given t1, . . . , tℓ the joint statistical 

distribution of  Xt1 , . . . ,Xtℓ is the same as the joint statistical distribution of Xt1+τ , . . . ,Xtℓ+τ for all ℓ and τ . 

This is an extremely strong definition: it means that all moments of all degrees : expectations, variances, third 

order and higher of the process, any where are the same. It also means that the joint distribution of (Xt,Xs) is the 

same as (Xt+r,Xs+r) and hence cannot depend on s or t but only on the distance between s and t, i.e. s − t. 
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Since the definition of strict stationary is generally too strict for everyday life,  a weaker definition of 

second order or weak stationary is usually used. Weak stationary means that the mean and the variance of a 

stochastic process do not depend on t (that is they are constant) and the auto-covariance between Xt and Xt+τ 

only can depend on the lag τ (τ is an integer, the quantities also need to be finite). Hence for stationary processes 

{Xt} the definition of auto-covariance is: 

  

            γ(τ ) = cov(Xt,Xt+τ ), 

for integers τ . It is vital to remember that, for the real world, the auto-covariance of a stationary process is a 

model, albeit a useful one. Many actual processes are not stationary as we will see in the next section. Having 

said this,  much fun can be given  with stationary stochastic processes! 

One also routinely comes across the autocorrelation of a process which is merely a normalized version 

of the auto-covariance to values between −1 and 1 and commonly uses the Greek letter ρ as its notation: 

              

        
( )

( )
(0)

 
 


       

  

   for integers  τ  and where           γ(0) = cov(Xt,Xt) = var(Xt). 

 

VI. Time Series Data 
A time series is a set of statistics, usually collected at regular intervals. Time series data occur naturally 

in many application areas. 

•  Economics e.g., monthly data for unemployment, hospital admissions, etc. 

•  Finance e.g., daily exchange rate, a share price, etc. 

•  Environmental e.g., daily rainfall, air quality readings. 

•  Medicine e.g., ECG brain wave activity every 2
−8

 sec. 

 

The methods of time series analysis pre-date those for general stochastic processes and Markov Chains. 

The aims of time series analysis are to describe and summarize time series data, to fit low-dimensional models, 

and to make forecasts. 

We write our real-valued series of observations as.. ,X−2,X−1,X0,X1,X2, ….., a doubly infinite 

sequence of real-valued random variables indexed by Z. 

 

VII. Trend, seasonality, cycles and residuals 
One simple method of describing a series is that of classical decomposition. The notion is that the 

series can be decomposed into four elements: 

1) Trend (Tt) — long term movements in the mean; 

2) Seasonal effects (It) — cyclical fluctuations related to the calendar; 

3) Cycles (Ct) — other cyclical fluctuations (such as a business cycles); 

4) Residuals (Et) — other random or systematic fluctuations. 

The idea is to create separate models for these four elements and then to combine them, either 

additively 

Xt = Tt + It + Ct + Et                                                         (3) 

or multiplicatively 

                                      

Xt = Tt · It · Ct · Et .                                                            (4) 

Stationary processes 

 

1. A sequence {Xt, t ∈ Z} is strongly stationary or strictly stationary if 

                       (Xt1, . . . ,Xtk)D=(Xt1+h, . . . ,Xtk+h) 

 for all sets of time points t1, . . . , tk and integer h. 

2. A sequence is weakly stationary, or second order stationary if 

(a) E( Xt) = μ, and 

(b) cov(Xt,Xt+k) = γk, 

       Where μ  is constant and γk is independent of  t. 

3. The sequence {γk, k ∈ Z} is called the auto-covariance function. 
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4. We also define   

0

( , )k
k t t kcorr X X





   

 and call { ,k k Z   } the auto-correlation function (ACF). 

 

Models for time series: (MA, AR and ARMA models) 

This section considers some basic probability models extensively used for modeling time series.  

 

Moving Average models: (MA) 

The moving average process of order q is denoted MA(q) and defined by 

                        
0

q

t s t s

s

X   



  

                      where θ1, . . . , θq are fixed constants, θ0 = 1, and { t  } is a sequence of independent 

(or uncorrelated) random variables with mean 0 and variance σ2. It is clear from the definition that this is the 

second order stationary  

2
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                                                                                   (5) 

                    We remark that two moving average processes can have the same auto-correlation function. Let    

 1
1 1t t t tXt and Xt          
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However, the first gives  
2

1 1 2 1 2( ) ...t t t t t t t t tX X X X X X                                               (7) 

 

                    This is only valid for |θ| < 1, so-called invertible process. No two invertible processes have the same 

autocorrelation function. 

 

                   Probably the next simplest model is that constructed by simple linear combinations of lagged 

elements of a purely random process, { t } with ( ) 0t  .  

A moving average process {Xt} of order q is defined by : 

0 1 1

0
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q
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 and the shorthand notation is MA(q). Usually with a newly defined process 

                   it is of interest to discover its statistical properties. For an MA(q) process the mean is simple to find 

(since the expectation of a sum is the sum of the expectations): 
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Because ( ) 0t   for any r.  

A similar argument can be applied for the variance calculation: 

 2 2 2

0 0 0

2

var( ) var

sin var( ) .

q q q

t i t i i t i i

i i i

r

X

ce for all t

     

 

 

  

 
    

 



  
                                                                    (10) 



Salahaddin A.Ahmed et al Int. Journal of Engineering Research and Applications        www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.280-292 

 

 
www.ijera.com                                                                                                                                284 | P a g e 

The auto-covariance is slightly trickier to work out. 
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                    where ,u   is the Kronecker delta which is 1 for u   and zero otherwise 

(This arises because of the independence of the   values. Thus since ,j i    is involved only terms in the j  

sum where j i    survive).  

Hence continuing the summation gives 

                                          
0

( )
q

i i

i
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                     In other words, the j  becomes j   and also the index of summation ranges only up to 

q   since the largest i   occurs for  i q    . 

 The formula for the auto-covariance of an MA(q) process is fascinating: 

 It is effectively the convolution of { i  } with itself (an ―auto convolution‖). 

                    One of the most important features of an MA(q) auto covariance is that it is zero for q  . The 

reason for its importance is that when one is confronted with an actual time series x1, . . . , xn., one can compute 

the sample auto covariance given by:  

   
1

( ) , (12)
n

i i
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c x x x x

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





    

 for τ = 0, . . . , n − 1. The sample autocorrelation can be computed as  

                  r(τ ) = c(τ )/c(0). If, when one computes the sample auto covariance, it cuts off at a certain lag q, i.e. 

it is effectively zero for lags of q + 1 or higher, then one can postulate the MA(q) model in (11.5) as the 

underlying probability model. There are other checks and tests that one can make but comparison of the sample 

auto covariance with reference values, such as the model auto covariance given in (11.12), is the first major step 

in the model identification. 

Also, at this point one should question what one means by ―effectively zero‖. The sample auto 

covariance is an empirical statistic calculated from the random sample at hand. If more data in the time series 

were collected, or another sample stretch used then the sample auto covariance would be different (although for 

long samples and stationary series the probability of a large difference should be very small). Hence, sample 

auto covariance and autocorrelations are necessarily random quantities and hence ―is effectively zero‖ translates 

into a statistical hypothesis test on whether the true autocorrelation is zero or not. Finally, whilst we are on the 

topic of sample auto covariance notice that at the extremes of the range of τ : 

                                 
2

0

(0)
n

i

i

c x x


   

Te sample variance will be:  

         1( 1) nc n x x 
 

  The lesson here is that c(0), which is an estimate of γ(0), is based on  n  pieces of information, where a  c(n − 

1), an estimate of γ(n − 1), is only based on 1 piece of information. Hence, it is easy to see that estimates of 

sample auto covariance for higher lags are more unreliable for those of smaller lags. 

 

VIII. Autoregressive processes: (AR) 
The autoregressive process of order p is denoted AR(p), and defined  
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                  where 1 2, ,..., r    are fixed constants and { t  } is a sequence of independent (or uncorrelated) 

random variables with mean 0 and variance
2 . 

 The AR(1) process is defined by 

              1t t tX X      

To find its auto covariance function we make successive substitutions, to get 

                          
2
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The fact that {Xt} is the second stationary follows from the observation that 

    E(Xt) = 0 and that the auto covariance function can be calculated as follows:   
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There is an easier way to obtain these results.  That is to multiply equation (13) by Xt−k   and taking the 

expected value, to give 
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Similarly, squaring (13) and taking the expected value gives  
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More generally, the AR(p) process is defined as 

           1 1 2 2 ...t t t p t p tX X X X           

                         Again, the autocorrelation function can be found by multiplying (1.3) by Xt−k, taking the 

expected value and dividing by γ0, thus producing the Yule-Walker equations 

          1 1 2 2 ... , 1, 2,...k k k p k p k              

These are linear recurrence relations, with general solution of the form 

                    1 1 ...
k k

k p pC C      

where 1 2, ,..., p    are the roots of 

1 2

1 2 .... 0p p p

p                                                                             (16) 

and C1, . . . ,Cp are determined by 0 1   and the equations for k = 1, . . . , p − 1. It is natural to require   

0k as k   , in which case the roots must lie inside the unit circle, that is, |ωi| < 1. Thus there is a 

restriction on the values of υ1, . . . , υp  that can be chosen. 

 

IX. ARMA  Models 
Both AR and MA models express different kinds of stochastic dependence. AR processes encapsulate a 

Markov-like quality where the future depends on the past, whereas MA processes combine elements of 
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randomness from the past using a moving window. An obvious step is to combine both types of behaviors into 

an ARMA(p, q) model which is obtained by a simple concatenation. The process autoregressive moving average 

process, ARMA(p, q), is defined by: 

1 0

p q

t r t r s t s

r s

X X   

 

                                                                      (17) 

 Where again { t   } is white noise. This process is stationary for appropriate υ, θ. 

  Also if the original process {Yt} is not stationary, we can look at the first order difference process 

                    1t t t tX Y Y Y      

or the second order differences  
2

1 2( ) 2t t t t t tX Y Y Y Y Y                                                     (18) 

   and so on. If we ever find that the differential  process is a stationary process we can  look for a ARMA model 

of that. 

The process {Yt} is said to be an autoregressive integrated moving average process, ARIMA(p, d, q), if 
d

t tX Y   is an ARMA(p, q) process. AR, MA, ARMA and ARIMA processes can be used to model many 

time series. A key tool in identifying a model is an estimate of the auto covariance function. We can estimate the 

mean by 
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and the autocorrelation by 
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ˆ
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X. Application part 
In order to build an appropriate model for time series during the search and through the model of box-

Jenkins to predict the daily temperatures in the city of Sulaimani, data has been collected from the recording 

data of the meteorological directorate of Sulaimani, for the one year period (2012), as illustrated in the table (1) 

in appendix. A statistical analysis of data was tested to see how they need to convert and complete stability, in 

contrast, then to obtain a homogeneous and appropriate data. According to that, mean and range of the data has 

been taken, and then the time series is divided into 12  sub-groups, including 12 observations for each, and then 

calculating the mean and the range of each sub-group, as shown in the table (1). This is also followed by a figure 

(1) of the mean against range, which can observe that the values are scattered in a random manner suggesting 

the extent and independence of the average and thus a homogeneous time series values and no need for a 

conversion process. In order to know the stationary  of the time series, we found the values of auto-correlation 

coefficients, as it is shown in (table 2) in the Appendix that time series is non-stationary ,so the first difference is 

taken  for the purpose to converting stationary time series, and to see the significance of the correlation 

coefficients in several periods of time, as well as to see the series containing  seasonal effects which is by 

finding  correlation coefficients and partial correlation coefficients . In order to diagnose appropriate model 

through the existing values in the tables (2 and 3) respectively, all the models are tested, the result is that the 

appropriate model is ARIMA (1,1,1) and the following form   1 1t t t tW W a a       .                          

                      

                        Table (1) shows the mean and the range of daily temperatures (2012-Sept. 2013) for Sulaimani 

by sub-groups, each of with size 12, Mean series =20.68, and Variance=104.91. 

 mean range N mean range N mean range N 

19.462 5.45 40 33.613 3.6 20 7.792 3.4 1 

17.312 7.05 41 33.241 4.2 21 4.604 6.06 2 

23.025 10.25 42 31.585 3.4 22 5.483 6.55 3 

21.420 8.05 43 29.837 4.6 23 7.579 3.75 4 
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25.425 8.25 44 27.808 3.55 24 6.795 9.5 5 

27.541 4.2 45 25.895 5.4 25 5.862 9.7 6 

30.850 3 46 21.854 9.75 26 11.058 12.6 7 

32.208 3.6 47 19.145 2.35 27 14.429 9.35 8 

34.104 4.9 48 15.408 7.1 28 19.183 6.65 9 

33.083 5.15 49 12.800 3.15 29 20.458 7.2 10 

32.637 4.86 50 10.450 4.35 30 23.962 7.3 11 

33.241 5.65 51 8.660 6.65 31 7.792 3.4 12 

31.716 7 52 8.660 4.25 32 25.263 7.5 13 

19.462 5.45 53 4.004 6.25 33 26.095 7.35 14 

   10.404 4.05 34 31.337 7.35 15 

   9.217 8.95 35 31.383 5.55 16 

   10.420 3.95 36 30.662 2.2 17 

   11.943 7.65 37 34.504 3.85 18 

   14.729 11.45 38 35.195 3.75 19 

                          

                     In this model, the parameters that have been estimated make minimum mean square error (3.221) 

and 0.193, 0.249    , parameters and the model is as follows 

1 1 10.193 0.249t t t t tW W W a a       . Through using this model, we can find the estimate and the 

residual values for January of 2013 .as shown in (table 3) in appendix. The model was also used to forecast 

efficiently, as a result the auto-correlation coefficient for residual were found as shown in table (4) in appendix. 

The same process was applied on other 15 days of September 2013.As illustrated in the figure (2). 

                   

                          Table (2) shows auto correlation coefficient after taking the first difference. 

rk k rk k rk k rk K 

-0.021 121 0.018 81 0.068 41 0.048 1 

-0.015 122 -0.025 82 -0.054 42 -0.195 2 

-0.001 123 0.065 83 -0.021 43 -0.079 3 

-0.058 124 0.016 84 0.004 44 -0.140 4 

0.041 125 0.004 85 0.021 45 -0.089 5 

-0.003 126 0.085 86 0.024 46 -0.008 6 

-0.041 127 -0.049 87 0.069 47 -0.039 7 

0.088 128 -0.039 88 0.004 48 -0.118 8 

0.008 129 0.007 89 0.043 49 -0.070 9 

-0.017 130 -0.028 90 0.015 50 -0.136 10 

-0.041 131 -0.073 91 0.083 51 -0.001 11 

0.002 132 -0.001 92 -0.028 52 0.032 12 

0.024 133 -0.020 93 -0.006 53 -0.027 13 

-0.038 134 -0.028 94 -0.003 54 -0.046 14 

0.006 135 -0.033 95 -0.013 55 0.048 15 

0.069 136 0.009 96 0.042 56 -0.018 16 

0.048 137 -0.015 97 0.031 57 0.120 17 

-0.041 138 0.004 98 -0.004 58 -0.083 18 

-0.009 139 -0.009 99 0.070 59 0.006 19 

-0.029 140 0.011 100 -0.007 60 -0.044 20 

0.000 141 -0.016 101 0.004 61 0.010 21 

-0.036 142 0.008 102 -0.057 62 0.078 22 

-0.023 143 -0.002 103 -0.044 63 -0.033 23 

0.019 144 -0.002 104 -0.006 64 0.031 24 

-0.058 145 0.053 105 -0.035 65 0.023 25 

-0.057 146 -0.020 106 0.006 66 0.106 26 

-0.006 147 -0.075 107 0.009 67 0.049 27 

0.021 148 0.020 108 -0.099 68 0.063 28 

-0.101 149 0.036 109 -0.035 69 0.001 29 

-0.004 150 -0.009 110 -0.090 70 0.030 30 

-0.005 151 -0.043 111 -0.016 71 -0.044 31 
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-0.020 152 -0.011 112 -0.001 72 -0.051 32 

  -0.044 113 -0.003 73 0.126 33 

  0.024 114 -0.070 74 0.157 34 

  0.060 115 -0.004 75 0.051 35 

  -0.052 116 0.010 76 0.134 36 

  -0.061 117 -0.028 77 0.044 37 

  -0.017 118 0.002 78 -0.017 38 

  0.023 119 -0.020 79 0.001 39 

  0.015 120 -0.042 80 0.021 40 

 

Table (3) Shows partial auto correlation coefficient after taking the first difference.   

rk k rk k Rk k rk k 

-0.032 121 0.037 81 0.057 41 0.048 1 

-0.022 122 0.019 82 -0.084 42 -0.193 2 

-0.006 123 0.044 83 -0.059 43 -0.096 3 

-0.060 124 0.054 84 -0.029 44 -0.105 4 

0.010 125 -0.020 85 0.055 45 -0.058 5 

0.066 126 0.009 86 0.065 46 0.046 6 

-0.002 127 -0.072 87 0.065 47 0.017 7 

-0.001 128 -0.076 88 0.021 48 -0.089 8 

0.027 129 -0.021 89 -0.001 49 -0.048 9 

-0.014 130 0.018 90 0.011 50 -0.077 10 

-0.018 131 -0.065 91 0.064 51 0.045 11 

0.043 132 0.037 92 -0.035 52 0.116 12 

0.005 133 0.059 93 -0.054 53 0.019 13 

-0.041 134 -0.037 94 -0.044 54 -0.046 14 

-0.027 135 0.006 95 -0.051 55 0.042 15 

0.014 136 0.028 96 0.058 56 -0.010 16 

0.027 137 0.013 97 0.033 57 0.091 17 

-0.073 138 0.034 98 0.014 58 -0.048 18 

-0.037 139 0.000 99 0.039 59 -0.047 19 

-0.007 140 0.012 100 0.010 60 -0.049 20 

0.001 141 -0.010 101 -0.013 61 -0.009 21 

0.013 142 -0.041 102 -0.006 62 0.082 22 

0.023 143 -0.023 103 -0.007 63 -0.006 23 

0.011 144 -0.018 104 -0.026 64 0.017 24 

-0.028 145 0.062 105 -0.057 65 -0.008 25 

-0.050 146 0.003 106 0.005 66 0.071 26 

-0.029 147 -0.038 107 0.059 67 0.022 27 

0.076 148 0.018 108 -0.039 68 0.035 28 

-0.003 149 0.050 109 -0.018 69 -0.022 29 

-0.024 150 -0.004 110 -0.017 70 -0.042 30 

0.007 151 -0.066 111 0.029 71 -0.088 31 

-0.003 152 0.018 112 0.039 72 -0.066 32 

  -0.057 113 0.077 73 0.127 33 

  0.000 114 -0.022 74 0.183 34 

  0.059 115 -0.005 75 -0.015 35 

  -0.040 116 0.010 76 0.008 36 

  -0.029 117 -0.043 77 -0.020 37 

  0.021 118 0.006 78 -0.109 38 

  0.025 119 0.003 79 -0.007 39 

  0.044 120 -0.027 80 0.033 40 

 

 

 

 

Table (4) shows the actual and the forecast data for 15 days of  September 2013 



Salahaddin A.Ahmed et al Int. Journal of Engineering Research and Applications        www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.280-292 

 

 
www.ijera.com                                                                                                                                289 | P a g e 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure (1) Mean and Range 
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Figure (2) represent actual and forecast data for 15 days of September 2013 


error forecast data actual data time 

0.99 28.31 29.3 1 

1.9 25.9 27.8 2 

1.4 26.1 27.5 3 

2.3 24.4 26.7 4 

4.2 23.8 28 5 

0.4 26.9 27.3 6 

0.9 27.3 28.2 7 

3.7 20.2 23.9 8 

2.3 19.5 21.8 9 

4.4 20.2 24.6 10 

3.08 29.32 32.4 11 

4.74 28.46 33.2 12 

1.77 30.23 32 13 

0.18 31.22 31.4 14 

1.81 31.29 33.1 15 
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According to what is stated in this applied study, which is to build an auto-regression model for time 

series through the box-Jenkins models, the researcher has reached a number of conclusions and same 

recommended points. 

XI. conclusions 
1) Through the values of auto-correlation coefficients in (Table 2) in Appendix, it  has been observed that daily 

temperature in the city of Sulaimani makes up the  non-stationary time series. 

2)According to the values that  have been found from the auto-correlation coefficients and partial auto-

correlation coefficients based on the table(2 and 3) respectively, in appendix, it has been observed that  the 

appropriate model is the model ARIMA(1,1,1   ), which can be written in the following  form: 

1 1t t t tW W a a      . 

3)Through the Figure 2, we have found that the model mentioned in the previous paragraph has given good 

estimates close to the actual values. 

 

Recommendations: 

Through the reported findings, the researcher recommends:  

1) The Meteorological Department and the relevant authorities can depend on different statistical models to 

forecast weather.  

2) Different box-Jenkins models can be used to predict daily temperature in different regions of  Kurdistan. 
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 Appendices  
Table (1) Daily temperatures in the city of Sulaimani, (2012 Sept.2013). 

6.3 7.6 13.2 25.3 28.3 36.5 34.4 24.8 15.8 10.4 8.2 14.6 13.5 14.0 29.3 33.1 34.0 

8.3 7.6 12.7 25.5 28.4 37.0 33.1 26.9 14.2 10.3 7.8 14.4 17.2 15.8 28.0 34.3 33.2 

8.0 8.1 13.1 25.2 31.3 34.9 33.3 25.9 13.5 8.5 9.4 10.6 10.3 10.4 28.8 35.2 31.3 

7.4 8.6 13.2 23.5 32.4 35.8 30.8 24.3 12.3 9.2 8.1 8.3 10.6 9.5 30.2 34.7  

7.1 9.9 12.9 20.5 33.2 35.7 30.1 25.8 13.5 7.8 6.2 10.1 14.2 12.1 34.3 32.5  

7.0 6.8 15.0 22.2 32.9 35.2 31.3 26.8 13.6 9.5 8.8 12.3 15.3 13.8 33.1 33.3  

7.8 7.5 10.5 22.5 34.5 35.2 30.0 24.2 14.3  6.6 11.9 15.8 13.8 30.7 33.0  

7.2 8.2 11.4 22.0 35.8 36.1 29.0 23.7 15.2  6.9 10.9 14.6 12.7 29.9 35.3  

9.2 4.3 13.1 23.0 33.8 37.4 32.3 23.4 13.8  6.4 10.3 15.2 12.7 30.3 31.2  

8.5 3.4 11.4 23.9 29.8 35.6 33.4 24.7 13.5  1.0 10.3 18.9 14.6 29.8 30.1  

7.2 4.6 10.6 26.3 28.3 34.3 33.5 26.2 11.9  0.7 9.0 20.9 14.9 29.9 30.6  

9.7 3.2 13.7 27.8 28.9 33.6 31.3 23.8 12.2  1.2 10.0 21.4 15.7 31.2 32.5  

7.1 6.4 17.3 27.1 31.8 36.1 28.9 24.9 11.6  3.0 10.8 21.0 15.9 30.5 31.2  

5.5 5.6 18.3 28.3 32.0 34.1 31.2 23.9 11.1  4.0 10.9 19.6 15.3 31.8 31.2  

6.1 6.9 19.3 26.3 32.2 34.1 31.8 21.3 11.3  4.5 11.7 15.5 13.6 33.0 35.5  
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6.4 8.1 19.9 21.5 31.3 35.3 29.2 18.9 11.9  4.8 12.0 17.3 14.6 30.8 35.0  

6.7 7.6 19.0 22.2 31.7 35.6 30.7 20.0 12.5  3.4 13.3 20.1 16.7 31.1 32.9  

5.6 8.5 18.9 24.8 31.6 34.9 29.5 19.7 13.2  5.8 12.2 22.9 17.5 33.7 32.6  

6.0 10.6 20.2 24.5 33.3 32.0 29.7 16.5 10.5  7.2 12.8 22.4 17.6 32.0 34.5  

2.9 12.7 21.3 25.9 32.3 33.0 31.5 19.3 10.5  9.9 14.0 17.8 15.9 31.8 32.0  

-0.1 6.9 23.2 29.0 31.5 33.3 32.0 18.2 10.4  9.4 10.9 16.6 13.7 34.0 31.4  

2.4 4.5 18.2 27.3 31.0 32.2 28.7 17.5 8.9  9.9 11.5 18.3 14.9 34.4 32.5  

3.0 2.4 16.5 23.7 29.5 32.9 27.9 17.2 9.5  11.7 16.0 19.1 17.5 31.4 33.3  

4.0 0.5 17.6 22.8 29.6 33.2 27.2 18.2 9.8  12.4 13.2 19.1 16.2 30.9 35.3  

4.3 1.5 18.4 24.4 30.3 34.9 26.8 18.1 10.5  11.0 10.4 19.1 14.7 31.6 34.6  

6.8 3.5 18.5 25.5 31.0 33.0 27.1 19.3 11.5  11.4 5.6 20.2 12.9 32.2 33.3  

9.1 7.5 19.6 23.6 29.3 33.8 28.9 19.8 9.3  11.9 8.1 19.8 13.9 33.7 34.8  

4.9 10.5 19.0 24.0 30.4 34.8 27.7 20.4 9.0  12.3 9.8 19.0 14.4 31.9 36.7  

6.8 9.5 18.5 24.2 31.0 34.4 27.7 21.5 8.8  9.7 12.4 18.6 15.5 32.8 31.8  

4.0 9.5 20.8 25.0 31.5 31.5 26.7 21.4 9.1  8.3 13.1 17.3 15.2 35.2 33.7  

2.5 6.8 17.4 26.4 31.3 31.3 26.2 19.6 7.5  9.0 12.6 14.1 13.3 36.8 31.3  

5.8 7.8 18.0 28.3 31.7 32.1 26.4 18.9 5.5  5.2 17.1 13.2 15.1 35.3 31.7  

6.2 13.4 19.0 26.5 31.9 32.0 26.1 19.4 7.2  5.6 19.8 13.7 16.8 32.5 31.0  

4.9 15.5 19.3 25.8 32.6 31.4 29.2 19.2 5.4  5.4 19.6 14.9 17.2 33.8 31.8  

3.4 13.9 20.0 28.3 33.0 33.0 30.6 20.8 10.3  7.1 21.6 16.7 19.2 34.3 32.1  

7.4 9.1 21.0 31.4 34.9 33.2 30.7 18.8 12.1  8.3 21.2 19.4 20.3 35.9 33.4  

6.3 5.8 22.3 32.3 32.8 34.6 29.1 14.9 9.7  9.0 11.7 19.6 15.7 33.9 30.2  

6.2 2.9 21.7 29.8 33.3 35.5 27.7 12.4 9.2  8.9 10.0 25.0 17.5 33.5 29.7  

7.3 7.8 23.3 28.8 34.8 34.7 26.3 11.0 9.1  11.1 13.0 26.7 19.8 32.8 30.4  

7.2 12.3 24.6 28.6 36.8 35.6 25.5 12.9 10.3  12.3 12.6 27.0 19.8 31.8 31.4  

                    

Table (2) Correlation coefficient.  

LAG ACF LAG) ACF LAG ACF 

1 0.981283 52 0.495725 103 -0.20173 

2 0.961147 53 0.479264 104 -0.21273 

3 0.94704 54 0.464623 105 -0.22289 

4 0.936336 55 0.45206 106 -0.23495 

5 0.929103 56 0.44156 107 -0.24638 

6 0.923845 57 0.428761 108 -0.25678 

7 0.917171 58 0.415333 109 -0.26814 

8 0.909232 59 0.402009 110 -0.28047 

9 0.904855 60 0.387998 111 -0.29393 

10 0.901917 61 0.372261 112 -0.30526 

11 0.901277 62 0.355887 113 -0.31745 

12 0.899624 63 0.339266 114 -0.32719 

13 0.893691 64 0.322769 115 -0.33625 

14 0.886351 65 0.307301 116 -0.34667 

15 0.880945 66 0.293818 117 -0.35613 

16 0.873425 67 0.281502 118 -0.36493 

17 0.866575 68 0.267933 119 -0.37376 

18 0.856783 69 0.255081 120 -0.3833 

19 0.848407 70 0.243019 121 -0.39418 

20 0.840697 71 0.231082 122 -0.40434 

21 0.834215 72 0.21828 123 -0.41416 

22 0.828689 73 0.205698 124 -0.42416 

23 0.820826 74 0.191094 125 -0.43284 

24 0.813255 75 0.176757 126 -0.4412 

25 0.804752 76 0.161562 127 -0.45072 

26 0.797356 77 0.145139 128 -0.46025 
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27 0.788137 78 0.129023 129 -0.46906 

28 0.776863 79 0.113613 130 -0.47826 

29 0.764777 80 0.09977 131 -0.48628 

30 0.753486 81 0.087215 132 -0.49328 

31 0.743212 82 0.073468 133 -0.50198 

32 0.736282 83 0.058953 134 -0.51114 

33 0.731866 84 0.043546 135 -0.5196 

34 0.723121 85 0.026227 136 -0.52836 

35 0.707894 86 0.010209 137 -0.53755 

36 0.693375 87 -0.00737 138 -0.54712 

37 0.678691 88 -0.02259 139 -0.55418 

38 0.664554 89 -0.03525 140 -0.55971 

39 0.654313 90 -0.04735 141 -0.56431 

40 0.643905 91 -0.06035 142 -0.5692 

41 0.632429 92 -0.07052 143 -0.57502 

42 0.619249 93 -0.08065 144 -0.58198 

43 0.609098 94 -0.09246 145 -0.5897 

44 0.601153 95 -0.10283 146 -0.59635 

45 0.594257 96 -0.11362 147 -0.60135 

46 0.584746 97 -0.12545 148 -0.60487 

47 0.573201 98 -0.1383 149 -0.61048 

48 0.559375 99 -0.15172 150 -0.6165 

49 0.54422 100 -0.16448 151 -0.62165 

50 0.528953 101 -0.1768 152 -0.62667 

51 0.513779 102 -0.1897   

 

Table (3) Shows actual data and residual for temp.(January 2012). 

      

 

T Wt wt E t Wt Wt E 

2 6.25 7.047 -0.797 17 6.35 5.509 0.841 

3 8.25 6.713 1.537 18 6.65 4.973 1.677 

4 8 7.923 0.077 19 5.6 5.499 0.101 

5 7.4 8.594 -1.194 20 6 5.957 0.043 

6 7.1 8.012 -0.912 21 2.85 6.466 -3.616 

7 7 8.114 -1.114 22 -0.1 3.547 -3.647 

8 7.8 6.879 0.921 23 2.35 -0.073 2.423 

9 7.15 7.105 0.045 24 3 0.135 2.865 

10 9.2 6.968 2.232 25 3.95 1.042 2.908 

11 8.5 9.195 -0.695 26 4.25 1.612 2.638 

12 7.2 9.360 -2.160 27 6.75 11.123 -4.373 

13 9.65 7.692 1.958 28 9.05 10.675 -1.625 

14 7.1 9.454 -2.354 29 4.85 8.503 -3.653 

15 5.45 7.890 -2.440 30 6.75 3.500 3.250 

 6.05 5.649 0.401 31.00 4 12.352 -8.352 


